## Journal of Medicinal **Chemistry**

© Copyright 2001 by the American Chemical Society

Volume 44, Number 7

March 29, 2001

## Letters

## Covalently Induced Activation of the $\delta$ **Opioid Receptor by a Fluorogenic** Affinity Label, 7'-(Phthalaldehydecarboxamido)naltrindole (PNTI)

Bertrand Le Bourdonnec,<sup>†</sup> Rachid El Kouhen,<sup>‡</sup> Gennady Poda,<sup>†</sup> Ping Y. Law,<sup>‡</sup> Horace H. Loh,<sup>‡</sup> David M. Ferguson, and Philip S. Portoghese\*,

Department of Medicinal Chemistry, College of Pharmacy, and Department of Pharmacology, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55455

Received January 4, 2001

The prototypical nonpeptide  $\delta$  opioid receptor antagonist, naltrindole<sup>1</sup> (1, NTI), is widely employed as a pharmacologic tool in opioid research. It is one of the most potent  $\delta$  antagonists, with potency in the subnanomolar range.<sup>2</sup> Here we report that modification of NTI (1) with an electrophilic *o*-phthalaldehyde (OPA) moiety to afford 2 (PNTI) results in an unprecedented change in activity from antagonist to a highly potent agonist upon covalent binding to the  $\delta$  opioid receptor.

We have previously reported on a new approach to the design of an affinity label 3 whose OPA moiety binds covalently to opioid receptors.<sup>3</sup> The covalent binding involves the generation of an isoindole fluorophore,<sup>4</sup> presumably as a consequence of cross-linking neighboring lysine and cysteine residues by the OPA moiety. This class of fluorogenic ligands has been termed "reporter affinity labels" because the generation of fluorescence implicates covalent cross-linking to specific amino acid residues.<sup>3</sup>

The rationale for the design of PNTI (2) was based on prior structure-activity relationship (SAR) studies which revealed that 7'-substitution on the indole ring of NTI is well-tolerated.<sup>2,5,6</sup> Also, computer-aided docking of PNTI onto the  $\delta$  opioid receptor revealed that an OPA moiety attached to NTI through a 7'-carboxamide



group may be in the vicinity of Lys214 and Cys216 residues located on TM 5 close to the extracellular surface of the  $\delta$  opioid receptor (Figure 1A).

PNTI (2) and its nonelectrophilic analogue 4 were synthesized from 7'-aminonaltrindole<sup>7</sup> (5) as illustrated in Scheme 1. Coupling of 5 with benzoic acid or 3,4-bis-[2-(1,3-dioxolanyl)]benzoic acid<sup>3</sup> in the presence of 1-hydroxybenzotriazole and dicyclohexylcarbodiimide gave the corresponding amido esters 6 or 7 which were selectively hydrolyzed with potassium carbonate to afford the amides 4 or 8. Target compound 2 was then obtained by hydrolysis of 8 under acidic conditions.

Receptor binding of 2 to membranes from CHO cells that possessed stably expressed  $\mu$  (83 fmol/mg protein),  $\delta$  (51 fmol/mg protein), and  $\kappa$  (36 fmol/mg protein) opioid receptors revealed that it was  $\delta$ -selective, with apparent  $K_{i}^{8}$  values of 14.9  $\pm$  0.8, 1.9  $\pm$  0.1, and 20.1  $\pm$  0.8 nM for  $\mu$ ,  $\delta$ , and  $\kappa$  receptors, respectively. Pretreatment of  $\delta$  receptors with low (20 nM) or high (1  $\mu$ M) concentrations of 2 (37°C, 15 min incubation in HEPES buffer, pH = 7.5) followed by extensive washing reduced the binding of [3H]diprenorphine in a concentration-dependent fashion (Figure 2). In contrast, pretreatment of  $\delta$ 

<sup>\*</sup> To whom correspondence should be addressed. Tel: 612-624-9174. Fax: 612-626-6891. E-mail: porto001@tc.umn.edu. † Department of Medicinal Chemistry, College of Pharmacy. ‡ Department of Pharmacology, School of Medicine.



**Figure 1.** Modeled interaction between PNTI (**2**) (green) and the  $\delta$  opioid receptor (orange) before (A) and after (B) covalent binding. (A) The OPA moiety of **2** is hydrogen-bonded to the  $\epsilon$ -NH<sub>3</sub><sup>(+)</sup> group of Lys214 as a reversibly bound complex. (B) Formation of the fluorescent isoindole after covalent binding of the OPA moiety to the side chains of Lys214 and Cys216 (magenta) in TM 5 leads to receptor activation triggered by clockwise rotation (when viewed from the extracellular side) of TM 5.

Scheme 1<sup>a</sup>



<sup>*a*</sup> Reagents and conditions: (a) benzoic acid or 3,4-bis[2-(1,3-dioxolanyl)]benzoic acid, DCC, HOBt, DMF, rt, 5 days, 72–67%; (b)  $K_2CO_3$ , CH<sub>3</sub>OH, rt, 1 h, 52–48%; (c) 1 N HCl, N<sub>2</sub>, acetone, rt, 5 days, 67%.

opioid receptors with naloxone (1  $\mu$ M) followed by washing did not reduce radioligand binding. The nonelectrophilic analogue **4** could be partially washed out from the membrane preparation.<sup>9</sup>

Covalent binding of **2** to  $\delta$  opioid receptors via the formation of a fluorescent isoindole was established using flow cytometry. This was accomplished with a Becton Dickinson Facs Vantage equipped with a multiwavelength UV laser for excitation using a band-pass filter of 530 ± 30 nm as described previously.<sup>3</sup> When CHO cells with stably expressed  $\delta$  opioid receptors were incubated with **2** (1  $\mu$ M) in HEPES buffer (pH = 7.5), the fluorescence intensity rapidly (50 s) increased relative to the autofluorescence of untreated cells. Nonspecific fluorescence was evaluated by incubation of **2** (1

 $\mu$ M) with nontransfected CHO cells. This permitted us to visualize the specific fluorescent staining of  $\delta$  opioid receptors (Figure 3).

The in vitro pharmacological profile of **2** was investigated on the electrically stimulated mouse vas deferens<sup>10</sup> (MVD) and the guinea-pig ileal longitudinal muscle<sup>11</sup>(GPI) preparations as previously described.<sup>12</sup> Compound **2** behaved as an extremely potent full agonist in the MVD assay, with an IC<sub>50</sub> of 0.12  $\pm$  0.03 nM. This represented a 2-fold greater potency than the prototypical  $\delta$  agonist [D-Ala<sup>2</sup>,D-Leu<sup>5</sup>]enkephalin<sup>13</sup> (DA-DLE) when tested in the same tissue.<sup>14</sup> This potent agonist effect of **2** could not be reversed by extensive washing. The finding that pretreatment with NTI (100 nM) in the MVD afforded a 160-fold shift of the



**Figure 2.** Irreversible binding of **2** to the  $\delta$  opioid receptor. Membranes of CHO cells stably transfected with the  $\delta$  opioid receptor were pretreated with **2** (20 nM or 1  $\mu$ M) or **4** (20 nM or 1  $\mu$ M) at 37 °C for 15 min. Free receptor sites were determined in the presence of [<sup>3</sup>H]diprenorphine (1 nM) before and after wash. Data are reported as percent of the total [<sup>3</sup>H]-diprenorphine binding of the treated sample. The values represent mean  $\pm$  SE of three independent experiments performed in triplicate.



**Figure 3.** Representative flow cytometric analysis of fluorescent opioid labeling of CHO cells. Untransfected CHO cells (-DOR) or CHO cells transfected with the  $\delta$  opioid receptor (+DOR) were incubated with (+2) or without (-2) compound 2 (1  $\mu$ M) at 25 °C for 50 s. The median fluorescence intensity values for each curve are as follows: green (2.71), blue (4.26), red (7.84).

concentration–effect curve of **2** suggested that it acted through  $\delta$  receptors. Compound **4** did not display significant agonist activity (3.4% inhibition at 100 nM) and was a weak antagonist (DADLE IC<sub>50</sub> ratio = 2.6) in the MVD.<sup>9,15</sup> In the GPI, PNTI (**2**) (100 nM) did not display any agonist activity and only weak antagonist activity at  $\mu$  (morphine IC<sub>50</sub> ratio = 2.5) and  $\kappa$  (ethylketazocine IC<sub>50</sub> ratio = 2.1) receptors. Thus, the bioassay experiments have shown that **2** prefers  $\delta$ receptors and possesses potent agonist potency in the MVD.

In the mouse tail-flick antinociceptive assay<sup>16</sup> PNTI (**2**) produced a dose- and time-dependent antinociception after icv administration. The antinociceptive peak effect was reached 20 min after icv administration, with an ED<sub>50</sub> value of 2.06 (1.59–2.64) nmol/mouse. To determine the selectivity of **2** at peak activity (20 min), mice were pretreated sc with NTI<sup>2</sup> (4  $\mu$ mol/kg),  $\beta$ -funaltrex-

amine<sup>17</sup> ( $\beta$ -FNA) (20  $\mu$ mol/kg), and norbinaltorphimine<sup>18</sup> (nor-BNI) (12  $\mu$ mol/kg), which are selective antagonists for  $\delta$ ,  $\mu$ , and  $\kappa$  opioid receptors, respectively. The antinociception produced by **2** was antagonized by pretreatment with NTI [ED<sub>50</sub> ratio = 13.99<sup>19</sup> (10.60–18.64)] but only marginally by  $\beta$ -FNA [ED<sub>50</sub> ratio = 2.67 (1.65–4.09)] or nor-BNI [ED<sub>50</sub> ratio = 2.14 (1.19–3.64)]. These data confirmed that the antinociceptive action of **2** was mediated primarily through  $\delta$  opioid receptors.

Antinociceptive activity was undetectable after 90 min. Given that continued exposure of the  $\delta$  opioid receptor<sup>20</sup> to agonist gives rise to rapid, reduced responsiveness as a consequence of desensitization and down-regulation, antinociceptive testing of the  $\delta$  agonist, [D-Pen<sup>2</sup>,D-Pen<sup>5</sup>]enkephalin<sup>21</sup> (DPDPE), was conducted 2 h after administration of **2** (2 nmol icv), when the tail-flick latency time had returned to normal values. Under these conditions, the antinociceptive effect of DPDPE was diminished, as indicated by its ED<sub>50</sub> ratio of 4.98 (3.99–6.30). We believe that this "antagonism" was a consequence of desensitization and down-regulation caused by the persistent agonism due to covalent binding of **2** to the  $\delta$  opioid receptor recognition site.

In conclusion, PNTI (2) has been shown to bind covalently to cloned  $\delta$  opioid receptors, as evidenced by the generation of fluorescence that is characteristic of isoindole cross-linked lysine and cysteine residues. That PNTI acts as a potent  $\delta$  opioid receptor agonist is counterintuitive, given that affinity labels derived from potent antagonists generally exhibit irreversible antagonist activity.<sup>1</sup>

Since its nonelectrophilic analogue **4** did not display agonist activity in the MVD preparation, it appears likely that covalent binding to the  $\delta$  receptor by PNTI (2) may be responsible for promoting a conformational change of the receptor from an inactive to an active state. A possible explanation for this unusual transformation is that the isoindole that is formed from covalent binding of PNTI to the neighboring Lys214 and Cys216 residues (Figure 1B) promotes a conformational change of TM 5. Recently, evidence for a rigid body motion of TM 6 has been observed in light-activated bacteriorhodopsin<sup>22</sup> and constitutively activated G proteincoupled receptors.<sup>23</sup> The involvement of TM 5 in the activation of the  $\alpha_2$ -adrenergic receptor has been also reported.<sup>24</sup> If perturbation of TM 5 or TM 6 leads to a conformational change of intracellular loop 3, which is known to be involved in the activation of G proteins, it is possible that the  $\delta$  agonism of **2** is initiated through a similar mechanism. Accordingly, cross-linking of the neighboring Lys214 and Cys216 residues may lead to axial rotation of TM 5 due to the torsion created by the formation of the isoindole fluorophore, as illustrated in Figure 1B. PNTI should be a useful tool to investigate the  $\delta$  receptor recognition site and the conformational transitions that take place in receptor activation.

**Acknowledgment.** We thank Mary M. Lunzer, Janet Peller, and Michael Powers for capable technical assistance. We are indebted to Dr. Shiv Kumar Sharma for the supply of 7'-aminonaltrindole employed in the synthesis of PNTI. This work was supported by the National Institute on Drug Abuse.

## References

- Takemori, A. E.; Portoghese, P. S. Selective Naltrexone-Derived Antagonists. Annu. Rev. Pharmacol. Toxicol. 1992, 32, 239–269.
- (2) Portoghese, P. S.; Sultana, M.; Takemori, A. E. Design of Peptidomimetic δ Opioid Antagonists Using the Message-Address Concept. J. Med. Chem. 1990, 33, 1714–1720.
- (3) Le Bourdonnec, B.; El Kouhen, R.; Lunzer, M. M.; Law, P. Y.; Loh, H. H.; Portoghese, P. S. Reporter Affinity Labels: An *o*-Phthalaldehyde Derivative of β-Natrexamine as a Fluorogenic Ligand for Opioid Receptors. *J. Med. Chem.* **2000**, *43*, 2489– 2492.
- (4) (a) Wong, O. S.; Sternson, L. A.; Schowen, R. L. Reaction of *o*-Phthalaldehyde with Alanine and Thiols: Kinetics and Mechanism. J. Am. Chem. Soc. **1985**, 107, 6421–6422. (b) Simmons, S. S., Jr.; Johnson, D. F. The Structure of the Fluorescent Adduct Formed in the Reaction of *o*-Phthalaldehyde and Thiols with Amines. J. Am. Chem. Soc. **1976**, 98, 7098–7099. (c) Simmons, S. S., Jr.; Johnson, D. F. Reaction of *o*-Phthalaldehyde and Thiols with Primary Amines: Fluorescence Properties of 1-Alkyl (and Aryl)thio-2-Alkylisoindoles. Anal. Biochem. **1978**, 90, 705–725. (d) Garcia Alvarez-Coque, M. C.; Medina Hernandez, M. J.; Villanueva Camanas, R. M.; Mongay Fernandez, C. Formation and Instability of *o*-Phthalaldehyde Derivatives of Amino Acids. Anal. Biochem. **1989**, 178, 1–7.
- (5) Ananthan, A.; Johnson, C. A.; Carter, R. L.; Clayton, S. D.; Rice, K. C.; Xu, H.; Davis, P.; Porreca, F.; Rothman, R. B. Synthesis, Opioid Receptor Binding, and Bioassay of Naltrindole Analogues Substituted in the Indolic Benzene Moiety. J. Med. Chem. 1998, 41, 2872–2881.
- (6) Kshirsagar, T.; Nakano, A. H.; Law, P. Y.; Elde, R.; Portoghese, P. S. NTI4F: A non-peptide fluorescent probe selective for functional delta opioid receptors. *Neurosci. Lett.* **1998**, *249*, 83– 86.
- (7) Portoghese, P. S.; Sultana, M.; Nelson, W. L.; Klein, P.; Takemori, A. E. δ Opioid Antagonist Activity and Binding Studies of Regioisomeric Isothiocyanate Derivatives of Naltrindole: Evidence for δ Receptor Subtypes. J. Med. Chem. 1992, 35, 4086– 4091.
- (8) The apparent  $K_i$  reflects both the reversible and irreversible binding components.
- (9) Compound **4** inhibited [<sup>3</sup>H]diprenorphine binding to  $\delta$  receptors with a  $K_i$  value of  $1.7 \pm 0.4$  nM. Like many morphinans and NTI analogues in particular, compound **4** is a "sticky" ligand and could not be washed out completely from the membrane preparation.
- (10) Henderson, G.; Hughes, J.; Kosterlitz, H. W. A New Example of a Morphine-Sensitive Neuro-Effector Junction: Adrenergic Transmission in the Mouse Vas Deferens. *Br. J. Pharmacol.* 1972, 46, 764–766.
- (11) Rang, H. P. Stimulant Actions of Volatile Anaesthetics on Smooth Muscle. Br. J. Pharmacol. 1964, 22, 356–365.
- (12) Portoghese, P. S.; Takemori, A. E. TENA, A Selective Kappa Opioid Receptor Antagonist. *Life Sci.* 1985, *36*, 801–805.
- (13) Fournie-Zaluski, M.-C.; Gacel, G.; Maigret, B.; Premilat, S.; Roques, B. P. Structural Requirements for Specific Recognition of Mu or Delta Opiate Receptors. *Mol. Pharmacol.* **1981**, *20*, 484–491.

- (14) DADLE:  $IC_{50} = 0.28$  nM in the same tissue.
- (15) The IC<sub>50</sub> ratio represents the IC<sub>50</sub> of DADLE in the presence of **4** (100 nM) divided by the control IC<sub>50</sub>.
- (16) Ward, S. J.; Portoghese, P. S.; Takemori, A. E. Pharmacological Characterization in Vivo of the Novel Opiate, β-Funaltrexamine. *J. Pharmacol. Exp. Ther.* **1982**, *220*, 494–498.
- (17) Takemori, A. E.; Larson, D. L.; Portoghese, P. S. The Irreversible Narcotic Antagonistic and Reversible Agonist Properties of the Fumaramide Methyl Ester Derivative of Naltrexone. *Eur. J. Pharmacol.* **1981**, *70*, 445–451.
- (18) Portoghese, P. S.; Lipkowski, A. W.; Takemori, A. E. Binaltorphimine and Nor-Binaltorphimine, Potent and Selective κ-Opioid Receptor Antagonists. *Life Sci.* **1987**, *40*, 1287–1292.
- (19) The  $ED_{50}$  ratio represents the  $ED_{50}$  of **2** in the presence of the antagonist divided by the control  $ED_{50}$ .
- (20) (a) Tsao, P. I.; Von Zastrow, M. Type-specific Sorting of G Protein-Coupled Receptors after Endocytosis. J. Biol. Chem.
  2000, 275, 11130-11140. (b) Hasbi, A.; Allouche, S.; Sichel, F.; Stanasila, L.; Massotte, D.; Landemore, G.; Polastron, J.; Jauzac, P. Internalization and Recycling of δ-Opioid Receptor Are Dependent on a Phosphorylation-Dephosphorylation Mechanism. J. Pharmacol. Exp. Ther. 2000, 293, 237-247. (c) Ko, J. L.; Arvidsson, U.; Williams, F. G.; Law, P. Y.; Elde, R.; Loh, H. H. Visualization of Time-dependent Redistribution of δ-Opioid Receptors in Neuronal Cells during Prolonged Agonist Exposure. Mol. Brain Res. 1999, 69, 171-185.
- (21) Mosberg, H. I.; Hurst, R.; Hruby, V. J.; Gee, K.; Yamamura, H. I.; Galligan, J. J.; Burks, T. S. Bis-penicillamine Enkephalins Possess Highly Improved Specificity Toward δ Opioid Receptor. *Proc. Natl. Acad. Sci. U.S.A.* **1983**, *80*, 5871–5874.
  (22) (a) Farrens, D. L.; Altenbach, C.; Yang, K.; Hubbell, W. L.;
- (22) (a) Farrens, D. L.; Altenbach, C.; Yang, K.; Hubbell, W. L.; Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. *Science* **1996**, *274*, 768–770. (b) Dunham, T. D.; Farrens, D. L. Conformational changes in rhodopsin. Movement of helix F detected by sitespecific chemical labeling and fluorescence spectroscopy. *J. Biol. Chem.* **1999**, *274*, 1683–1690.
- (23) (a) Konopka, J. B.; Margarit, S. M.; Dube, P. Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G protein-coupled α-factor receptor. *Proc. Natl. Acad. Sci. U.S.A.* **1996**, *93*, 6764–6769. (b) Javitch, J. A.; Fu, D.; Liapakis, G.; Chen, J. Constitutive activation of the β<sub>2</sub> adrenergic receptor alters the orientation of its sixth membrane-spanning segment. *J. Biol. Chem.* **1997**, *272*, 18546–18549. (c) Rasmussen, S. G.; Jensen, A. D.; Liapakis, G.; Ghanouni, P.; Javitch, J. A.; Gether, U. Mutation of a highly conserved aspartic acid in the β<sub>2</sub> adrenergic receptor: constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. *Mol. Pharmacol.* **1999**, *56*, 175–184.
- (24) Marjamaki, A.; Frang, H.; Pihlavisto, M.; Hoffren, A. M.; Salminen, T.; Johnson, M. S.; Kallio, J.; Javitch, J. A.; Scheinin, M. Chloroethylclonidine and 2-aminoethyl methanethiosulfonate recognize two different conformations of the human α<sub>2A</sub>-adrenergic receptor. J. Biol. Chem. **1999**, 274, 21867–21872.

JM010004U