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The prototypical nonpeptide δ opioid receptor antago-
nist, naltrindole1 (1, NTI), is widely employed as a
pharmacologic tool in opioid research. It is one of the
most potent δ antagonists, with potency in the sub-
nanomolar range.2 Here we report that modification of
NTI (1) with an electrophilic o-phthalaldehyde (OPA)
moiety to afford 2 (PNTI) results in an unprecedented
change in activity from antagonist to a highly potent
agonist upon covalent binding to the δ opioid receptor.

We have previously reported on a new approach to
the design of an affinity label 3 whose OPA moiety binds
covalently to opioid receptors.3 The covalent binding
involves the generation of an isoindole fluorophore,4
presumably as a consequence of cross-linking neighbor-
ing lysine and cysteine residues by the OPA moiety.
This class of fluorogenic ligands has been termed
“reporter affinity labels” because the generation of
fluorescence implicates covalent cross-linking to specific
amino acid residues.3

The rationale for the design of PNTI (2) was based
on prior structure-activity relationship (SAR) studies
which revealed that 7′-substitution on the indole ring
of NTI is well-tolerated.2,5,6 Also, computer-aided dock-
ing of PNTI onto the δ opioid receptor revealed that an
OPA moiety attached to NTI through a 7′-carboxamide

group may be in the vicinity of Lys214 and Cys216
residues located on TM 5 close to the extracellular
surface of the δ opioid receptor (Figure 1A).

PNTI (2) and its nonelectrophilic analogue 4 were
synthesized from 7′-aminonaltrindole7 (5) as illustrated
in Scheme 1. Coupling of 5 with benzoic acid or 3,4-bis-
[2-(1,3-dioxolanyl)]benzoic acid3 in the presence of 1-hy-
droxybenzotriazole and dicyclohexylcarbodiimide gave
the corresponding amido esters 6 or 7 which were
selectively hydrolyzed with potassium carbonate to
afford the amides 4 or 8. Target compound 2 was then
obtained by hydrolysis of 8 under acidic conditions.

Receptor binding of 2 to membranes from CHO cells
that possessed stably expressed µ (83 fmol/mg protein),
δ (51 fmol/mg protein), and κ (36 fmol/mg protein) opioid
receptors revealed that it was δ-selective, with apparent
Ki

8 values of 14.9 ( 0.8, 1.9 ( 0.1, and 20.1 ( 0.8 nM
for µ, δ, and κ receptors, respectively. Pretreatment of
δ receptors with low (20 nM) or high (1 µM) concentra-
tions of 2 (37°C, 15 min incubation in HEPES buffer,
pH ) 7.5) followed by extensive washing reduced the
binding of [3H]diprenorphine in a concentration-depend-
ent fashion (Figure 2). In contrast, pretreatment of δ
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opioid receptors with naloxone (1 µM) followed by
washing did not reduce radioligand binding. The non-
electrophilic analogue 4 could be partially washed out
from the membrane preparation.9

Covalent binding of 2 to δ opioid receptors via the
formation of a fluorescent isoindole was established
using flow cytometry. This was accomplished with a
Becton Dickinson Facs Vantage equipped with a mul-
tiwavelength UV laser for excitation using a band-pass
filter of 530 ( 30 nm as described previously.3 When
CHO cells with stably expressed δ opioid receptors were
incubated with 2 (1 µM) in HEPES buffer (pH ) 7.5),
the fluorescence intensity rapidly (50 s) increased rela-
tive to the autofluorescence of untreated cells. Nonspe-
cific fluorescence was evaluated by incubation of 2 (1

µM) with nontransfected CHO cells. This permitted us
to visualize the specific fluorescent staining of δ opioid
receptors (Figure 3).

The in vitro pharmacological profile of 2 was inves-
tigated on the electrically stimulated mouse vas defer-
ens10 (MVD) and the guinea-pig ileal longitudinal
muscle11(GPI) preparations as previously described.12

Compound 2 behaved as an extremely potent full
agonist in the MVD assay, with an IC50 of 0.12 ( 0.03
nM. This represented a 2-fold greater potency than the
prototypical δ agonist [D-Ala2,D-Leu5]enkephalin13 (DA-
DLE) when tested in the same tissue.14 This potent
agonist effect of 2 could not be reversed by extensive
washing. The finding that pretreatment with NTI (100
nM) in the MVD afforded a 160-fold shift of the

Figure 1. Modeled interaction between PNTI (2) (green) and the δ opioid receptor (orange) before (A) and after (B) covalent
binding. (A) The OPA moiety of 2 is hydrogen-bonded to the ε-NΗ3

(+) group of Lys214 as a reversibly bound complex. (B) Formation
of the fluorescent isoindole after covalent binding of the OPA moiety to the side chains of Lys214 and Cys216 (magenta) in TM
5 leads to receptor activation triggered by clockwise rotation (when viewed from the extracellular side) of TM 5.

Scheme 1a

a Reagents and conditions: (a) benzoic acid or 3,4-bis[2-(1,3-dioxolanyl)]benzoic acid, DCC, HOBt, DMF, rt, 5 days, 72-67%; (b) K2CO3,
CH3OH, rt, 1 h, 52-48%; (c) 1 N HCl, N2, acetone, rt, 5 days, 67%.
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concentration-effect curve of 2 suggested that it acted
through δ receptors. Compound 4 did not display
significant agonist activity (3.4% inhibition at 100 nM)
and was a weak antagonist (DADLE IC50 ratio ) 2.6)
in the MVD.9,15 In the GPI, PNTI (2) (100 nM) did not
display any agonist activity and only weak antagonist
activity at µ (morphine IC50 ratio ) 2.5) and κ (eth-
ylketazocine IC50 ratio ) 2.1) receptors. Thus, the
bioassay experiments have shown that 2 prefers δ
receptors and possesses potent agonist potency in the
MVD.

In the mouse tail-flick antinociceptive assay16 PNTI
(2) produced a dose- and time-dependent antinociception
after icv administration. The antinociceptive peak effect
was reached 20 min after icv administration, with an
ED50 value of 2.06 (1.59-2.64) nmol/mouse. To deter-
mine the selectivity of 2 at peak activity (20 min), mice
were pretreated sc with NTI2 (4 µmol/kg), â-funaltrex-

amine17 (â-FNA) (20 µmol/kg), and norbinaltorphimine18

(nor-BNI) (12 µmol/kg), which are selective antagonists
for δ, µ, and κ opioid receptors, respectively. The
antinociception produced by 2 was antagonized by
pretreatment with NTI [ED50 ratio ) 13.9919 (10.60-
18.64)] but only marginally by â-FNA [ED50 ratio ) 2.67
(1.65-4.09)] or nor-BNI [ED50 ratio ) 2.14 (1.19-3.64)].
These data confirmed that the antinociceptive action of
2 was mediated primarily through δ opioid receptors.

Antinociceptive activity was undetectable after 90
min. Given that continued exposure of the δ opioid
receptor20 to agonist gives rise to rapid, reduced respon-
siveness as a consequence of desensitization and down-
regulation, antinociceptive testing of the δ agonist,
[D-Pen2,D-Pen5]enkephalin21 (DPDPE), was conducted
2 h after administration of 2 (2 nmol icv), when the tail-
flick latency time had returned to normal values. Under
these conditions, the antinociceptive effect of DPDPE
was diminished, as indicated by its ED50 ratio of 4.98
(3.99-6.30). We believe that this “antagonism” was a
consequence of desensitization and down-regulation
caused by the persistent agonism due to covalent
binding of 2 to the δ opioid receptor recognition site.

In conclusion, PNTI (2) has been shown to bind
covalently to cloned δ opioid receptors, as evidenced by
the generation of fluorescence that is characteristic of
isoindole cross-linked lysine and cysteine residues. That
PNTI acts as a potent δ opioid receptor agonist is
counterintuitive, given that affinity labels derived from
potent antagonists generally exhibit irreversible an-
tagonist activity.1

Since its nonelectrophilic analogue 4 did not display
agonist activity in the MVD preparation, it appears
likely that covalent binding to the δ receptor by PNTI
(2) may be responsible for promoting a conformational
change of the receptor from an inactive to an active
state. A possible explanation for this unusual transfor-
mation is that the isoindole that is formed from covalent
binding of PNTI to the neighboring Lys214 and Cys216
residues (Figure 1B) promotes a conformational change
of TM 5. Recently, evidence for a rigid body motion of
TM 6 has been observed in light-activated bacterior-
hodopsin22 and constitutively activated G protein-
coupled receptors.23 The involvement of TM 5 in the
activation of the R2-adrenergic receptor has been also
reported.24 If perturbation of TM 5 or TM 6 leads to a
conformational change of intracellular loop 3, which is
known to be involved in the activation of G proteins, it
is possible that the δ agonism of 2 is initiated through
a similar mechanism. Accordingly, cross-linking of the
neighboring Lys214 and Cys216 residues may lead to
axial rotation of TM 5 due to the torsion created by the
formation of the isoindole fluorophore, as illustrated in
Figure 1B. PNTI should be a useful tool to investigate
the δ receptor recognition site and the conformational
transitions that take place in receptor activation.
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Figure 2. Irreversible binding of 2 to the δ opioid receptor.
Membranes of CHO cells stably transfected with the δ opioid
receptor were pretreated with 2 (20 nM or 1 µM) or 4 (20 nM
or 1 µM) at 37 °C for 15 min. Free receptor sites were
determined in the presence of [3H]diprenorphine (1 nM) before
and after wash. Data are reported as percent of the total [3H]-
diprenorphine binding of the treated sample. The values
represent mean ( SE of three independent experiments
performed in triplicate.

Figure 3. Representative flow cytometric analysis of fluores-
cent opioid labeling of CHO cells. Untransfected CHO cells
(-DOR) or CHO cells transfected with the δ opioid receptor
(+DOR) were incubated with (+2) or without (-2) compound
2 (1 µM) at 25 °C for 50 s. The median fluorescence intensity
values for each curve are as follows: green (2.71), blue (4.26),
red (7.84).
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